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What is Bohmian Mechanics

Valia Allori1,3 and Nino Zanghı̀2

Bohmian mechanics is a quantum theory with a clear ontology. To make clear what
we mean by this, we shall proceed by recalling first what are the problems of quantum
mechanics. We shall then briefly sketch the basics of Bohmian mechanics and indicate
how Bohmian mechanics solves these problems and clarifies the status and the role of
the quantum formalism.
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1. WHAT IS QUANTUM MECHANICS ABOUT?

The basic problem of quantum mechanics is that it is not clear what quantum
mechanics is about—what quantum mechanics describes—as repeatedly stressed
by John Bell (1987) and, more recently, by Shelly Goldstein (1998).

It might seem that quantum mechanics is basically about the behavior of
wave functions. However, as Scrödinger has effectively shown with his famous
cat paradox (Schrödinger, 1935), it turns out that the complete state description
cannot be given by the wave function—obeying Schrödinger’s equation—as this
would lead to paradoxical conclusions like, for example, a superposition between
a dead and an alive cat. Bell has rephrased this mental experiment in a less cruel
way as follows: consider a cat in a perfectly isolated room. Together with the
cat, the experimenter has put in the room a radioactive source and a complicated
mechanism. If a radioactive nucleus decays, the mechanism opens a source of
milk such that it fills a cup and the cat can drink. The room has no window so
that what happens inside is completely hidden to the experimenter: she doesn’t
know whether the cat is still hungry or if she enjoyed her meal. In this way the
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radioactive decay, a microscopic event, influences directly a macroscopic event,
like the presence or not of some milk molecules in the stomach of the cat.

From the mathematical rules of quantum mechanics it follows that, given
that the wave function of the radioactive nucleus is in a superposition of decayed–
nondecayed wave function, the cat is neither hungry nor filled up but it is in
a superposition of both states. However, from ordinary experience, we know
that macroscopic object cannot be in such a superposition of states with macro-
scopically disjoint supports, so somewhere, somehow, quantum mechanics gives
the wrong answer. Note that, if the experimenter opens the door of the room,
finds out the cat always or in one or in the other state: as a consequence of
observation (measurement), the wave function has collapsed in one of the two
possibilities.

The Schrödinger’s cat paradox poses several questions: what is the role of
the observer? Which observer is entitled to reduce the wave function? Where
is the border between the microscopic world, in which superpositions can exist,
and the macroscopic world, in which they cannot? Nobody has ever found sat-
isfactory answers to these questions within the standard framework of quantum
mechanics. Indeed, Bell has drawn the conclusion that there are only two ways
out: or to add something to the wave function for the description of the state of
the system, or to modify Schrödinger’s equation. While this latter path is the one
taken by the so called theories of spontaneous localization, or shortly GRW the-
ories (Ghirardi et al., 1986), Bohmian mechanics is a theory that follows the first
direction.4

2. BOHMIAN MECHANICS

The first step in the construction of a physical theory is to establish what are
the mathematical entities (particles, fields, strings, . . . ) with which one intends to
describe physical reality. These mathematical entities are what the theory is about
and they are often called the ontology of the theory—a rather complicated way of
expressing a simple, even though deep, physical notion.

In nonrelativistic Bohmian mechanics the world is described by point-like
particles which follow trajectories determined by a law of motion. The evolution
of the positions of these particles is guided by the wave function which itself evolves

4 Bohmian mechanics (also called “pilot-wave theory” or “causal interpretation”) was discovered in
1927 by De Broglie (Solvay Congress, 1928) and soon abandoned. It was rediscovered, extensively
extended, and for the first time fully understood, in 1952 by David Bohm (1952). During the sixties,
seventies and eighties, John Bell was its principal proponent: his book (Bell, 1987) contains a yet
unsurpassable introduction to Bohmian mechanics. Other standard references are the books of Bohm
and Hiley (1993) and the one of Holland (1993). The approach we are following here is that of the
“Rutgers–München–Genova” group (quite in line with the approach of Bell), see, e.g., Dürr (2001),
Dürr, Goldstein, and Zanghi (1992, 1996), Goldstein (1998, 2001).
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according to Schrödinger’s equation. In other words, in Bohmian mechanics the
complete description of the state of an N point-like particles system is the couple
(�, Q), where � = �(q , t) = �((q1, . . . , qN ), t) and Q = (Q1(t), . . . , QN (t))
are respectively the wave function and the actual configuration of the system, with
Qk denoting the actual position of the k-th particle in ordinary three dimensional
space (we will always denote the actual configuration of the system with a capital
letter).

One might think of Bohmian mechanics as a dynamical system and from this
point of view it can be compared with classical mechanics. While in Newtonian
mechanics the dynamics of the k-th particle is determined by a second order
differential equation

d2 Qk

dt2
= F

m
, (1)

in which F is a force field, derived from a potential field V , in Bohmian mechanics
the point particle dynamics is given by a first order differential equation

d Qk

dt
= v�(Q), (2)

where v� = (v�
1 , . . . , v�

N ) is a velocity field on the configuration space. This field is
generated by the wave function � which itself evolves according to Schrödinger’s
equation

i h
∂�

∂t
= H�, (3)

where H is the Hamiltonian, given, for nonrelativistic spinless particles, by

H = −
N∑

k=1

h2

2mk
∇2

k + V (4)

The velocity field is determined by reasons of simplicity and symmetry (Dürr et al.,
1992):

v�
k = h

mk
Im

[∇k�

�

]
(5)

(with the wave function playing somehow the role of “potential field” for the ve-
locity field). The factor h/m comes from the requirement of Galilei invariance, the
imaginary part is a consequence of invariance under time reversal transformations,
the gradient comes from rotational invariance, and the fact that one has to divide for
� derives from the homogeneity of degree zero of the velocity field—the fact that
a quantum state is a ray in Hilbert space. If there is a magnetic field B = rotA, ∇k

should represent the covariant derivative associated with the vector potential A.
If the particles have spin, the wave function is a spinor and we should rewrite the
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velocity field as

v�
k = h

mk
Im

[
�∗∇k�

�∗�

]
, (6)

where now in the numerator and denominator appears the scalar product in the
spinor space between � and its complex conjugate �∗.

The global existence of Bohmian dynamics has been proven with full mathe-
matical rigor in Berndl et al. (1995) where it has been shown that for a large class
of Schrödinger Hamiltonians (4), including Coulomb potential V with arbitrary
charges and masses and sufficiently regular initial datum �0 of (3), the solution of
(2) exists uniquely and globally in time for |�0|2—almost all initial configurations
Q0.

Equations (2) and (3) (together with (4) and (5)) form a complete specifi-
cation of the theory. Without any other axiom, all the phenomena governed by
nonrelativistic quantum mechanics, from spectral lines and quantum interference
experiments to scattering theory, superconductivity and quantum computation fol-
low from the analysis of the dynamical system defined by (2) and (3).

3. EXPERIMENTAL PREDICTIONS

Bohmian mechanics makes the same predictions as does nonrelativistic or-
dinary quantum mechanics for the results of any experiment, provided that we
assume a random distribution for the configuration of the system and the appa-
ratus at the beginning of the experiment given by ρ(q, t) = |�(q, t)|2. In fact,
consider the quantum continuity equation

∂ρ

∂t
+ divJ� = 0, (7)

which is, by itself, a simple consequence of Schrödinger’s equation. Here J� =
(J�

1 , . . . J�
N ) is the quantum probability current

J�
k = h

mk
Im[�∗∇k�] = |�|2v�

k . (8)

Equation (7) becomes the classical continuity equation

∂ρ

∂t
+ divρv� = 0 (9)

for the system d Qt/dt = v� and it governs the evolution of the probability density
ρ under the motion defined by the guiding equation (Eq. (2)) for the particular
choice ρ = |�|2. In other words, if the probability density for the configuration
satisfies ρ(q, t0) = |�(q , t0)|2 at some time t0, then the density to which this is
carried by the motion (7) at any time t is also given by ρ(q, t) = |�(q, t)|2. This
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is an extremely important property of any Bohmian system. In fact it expresses a
compatibility between the two equations of motion defining the dynamics, which
we call equivariance of |�|2.

The above assumption, which guarantees agreement between Bohmian me-
chanics and quantum mechanics regarding the results of any experiment, is what
has been called (Dürr et al., 1992) the quantum equilibrium hypothesis: when a
system has a wave function �, its configuration Q is random with probability
distribution given by

ρ(q) = |�(q)|2. (10)

While the meaning and justification of this hypothesis—which should be regarded
as a local manifestation of a global quantum equilibrium state of our universe—
is a delicate matter, which has been discussed at large elsewhere (Dürr et al.,
1992), it is important to recognize that, merely as a consequence of (9) and (10),
Bohmian mechanics is a counterexample to all of the claims to the effect that
a deterministic theory cannot account for quantum randomness in the familiar
statistical mechanical way, as arising from averaging over ignorance: Bohmian
mechanics is clearly a deterministic theory and, as we have just explained, it does
account for quantum randomness as arising from averaging over ignorance given
by |�(q)|2.

It is important to realize that not simply Bohmian mechanics makes the
same predictions as does orthodox quantum theory for the results of any ex-
periment, but that the quantum formalism of operators as observables emerges
naturally and simply from it as the very expression of the empirical import of
Bohmian mechanics. More precisely, it turns out that in Bohmian mechanics self-
adjoint operators arise in association with specific experiments as a tool to com-
pactly express and represent the relevant data—the results and their statistical
distributions—of these experiments. The key ingredient to understand how this
comes about is to recall (Dürr et al., 1996) that a completely general experiment is
described by:

• a unitary map U transforming the initial state of system and apparatus
ψ0(x) ⊗ φ0(y) into a final state �(x , y) = U (ψ0(x) ⊗ φ0(y)) (x refers to
the configurations of the system and y those of the apparatus);

• a pointer variable Z = F(Y ) representing the pointer orientation in terms
of the microscopic configurations Y of the apparatus.

It is a direct consequence of quantum equilibrium and linearity of
Schrödinger’s equation (Dürr et al., 1996) that the probability distribution of the
pointer variable Z is a measured-valued quadratic form on the Hilbert space of wave
function, and, as such, mathematically equivalent to a positive–operator–valued
measure (POVM). It turns out that self–adjoint operators (which are, by the spectral
theorem, in one to one correspondence with projector–valued measures) represent
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quantum observables associated with the special class of repeatable experiments
(Dürr et al., 2004).

Note that, as a byproduct of the foregoing considerations, one obtains a very
general notion of measurability:

A physical quantity is measurable only if its probability distribution is
a measure-valued quadratic form on the Hilbert space of wave functions. (11)

Sometimes it is claimed that it is possible to experimentally discriminate be-
tween Bohmian mechanics and quantum mechanics. This claim is however totally
unfounded: there must be experimental agreement as a consequence of quantum
equilibrium. The experimental equivalence of Bohmian mechanics with quantum
mechanics might appear, somehow, a little frustrating fact: while, on one hand,
all the experimental evidence confirms Bohmian mechanics as well as quantum
mechanics, on the other hand it would be easier if the experimental prediction were
different. In fact, if there were a crucial experiment able to discriminate between
the two theories, there would be something objective to establish which is the cor-
rect theory. It must be made clear, however, that the experimental equivalence of
Bohmian mechanics with quantum mechanics holds as long as the predictions of
quantum mechanics are not ambiguous. There are in fact a variety of experimental
issues that don’t fit comfortably within the standard operator quantum formalism,
such as dwell and tunneling times (Leavens, 1996), escape times and escape po-
sitions (Daumer et al., 1997a), scattering theory (Dürr et al., 2000), but are easily
handled by Bohmian mechanics.

Actually, after the discussion of the previous sections, it should be clear that
the comparison shouldn’t be made only on the level of experimental prediction
but, on the contrary, the decision of what is the right theory should be taken on the
deeper level of the ontology of the theory—what the theory is about.

4. THE COLLAPSE OF THE WAVE FUNCTION

The existence of configurations in Bohmian mechanics allows for a natural
and clear notion of wave function of a subsystem. In fact, consider a composite
system composed by a subsystem and by its environment. If Qt = (Xt , Yt ), where
Xt is the actual (i.e., what really is) configuration of the subsystem at time t and
Yt is that of its environment at the same time, we can define the conditional wave
function for the x-system at time t as

ψt (x) = �t (x , Yt ), (12)

that is, the wave function of the whole universe (the biggest system of all) �t calcu-
lated in the actual configuration of the environment. Under appropriate conditions
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ψ(x) satisfies Schrödinger’s equation in x . In this case it is indeed the effective
wave function for the x-system, that is, the collapsed wave function that the ordi-
nary quantum formalism assigns to the subsystem after a quantum measurement.
In fact, suppose � has the structure occurring in a measurement situation

�t (x , y) = ψt (x)φt (t) + �⊥
t (x , y), (13)

where φt (y) and �⊥
t (x , y) (the part of �t which is not ψt (x)φt (x)) have macro-

scopically disjoint y-supports. If Yt belongs to the support of φt (y), ψt (x) is the
effective wave function of the x-system at time t . (For a clear exposition of this,
see Dürr et al. (1996) or Dürr et al. (1997)).

Thus, the collapse of the wave function can be deduced from Bohmian me-
chanics without introducing any active role to the observer. Consider, again, the
cat paradox in the original version, where the two superposing states are dead and
alive cat. In Bohmian mechanics at any time t the cat is something real, she is either
dead or alive, independently on who is looking at her. Note that the wave func-
tion can be in a superposition state because it evolves according to Schrödinger’s
equation, but in Bohmian mechanics the state of the system is given by the cou-
ple (�, Q) of the wave function and the configurations Q = (Q1, . . . , Qn) of all
the particles composing the system (the cat), not only by �. Thus, according to
which support Q belongs to (to those of the wave function �dead describing the
dead cat or to those of the wave function �alive describing the alive cat), the cat is
actually dead or alive. Note that superpositions exist on all scales (from micro to
macro) but don’t influence at all the fact that the cat is this or that. At this point a
question could arise: due to the presence of a superposition wave function, could
it be possible that the cat, who at some time is dead, returns alive? The cat has an
actual configuration, belonging (in our example) to the support of �dead, and its
evolution is guided by the wave function. There seems to be nothing to prevent
Q to be guided in the support of �alive, making the dead–alive transition possible.
Actually, this is possible but very unlikely to happen, in fact the supports of the
two wave functions are macroscopically distinguishable. By this we mean that the
macroscopic variables, like, e.g., the temperature, assume different values in the
two states, even if the microscopic quantities from which they have been derived
might be similar. The temperature of a dead cat and that of an alive cat are, in
general, different. Thus, if Q at some time belongs to the support of �dead, the
effect of �alive is completely negligible: we can forget about it for the dynamics of
Q. The dead–alive transition could be possible if we would be able to bring the two
wave functions close to each other again. But the probability of having success in
this would be even lower than the probability that all the molecules of perfume we
have sprayed in a room would come back spontaneously in the neighborhood of the
bottle!
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5. BOHMIAN MECHANICS AND NEWTONIAN MECHANICS

To point out some interesting features of Bohmian mechanics, it can be useful
to write the wave function � in the polar form

� = Re
i
h S (14)

and then rewrite Schrödinger’s equation in terms of these new variables. This is
indeed what Bohm originally did in his 1952 paper (Bohm, 1952). In this way one
obtains from (3) a pair of coupled equations: the continuity equation for R2,

∂ R2

∂t
+ div

(∇k S

m

)
R2 = 0, (15)

which suggests that ρ = R2 can be interpreted as a probability density, and a
modified Hamilton-Jacobi equation for S,

∂S

∂t
+ (∇k S)2

2m
+ V −

∑
k

h2

2mk

∇2
k R

R
= 0. (16)

Note that this equation differs from the usual classical Hamilton-Jacobi equation

∂S

∂t
+ (∇k S)2

2m
+ V = 0 (17)

only by the appearance of an extra term, the quantum potential

U ≡ −
∑

k

h2

2mk

∇2
k R

R
. (18)

This modified Hamilton-Jacobi equation can be used, together with the continuity
equation for R, to define particle trajectories identifying the velocity with vk =
∇k S
m . In this way the resulting motion is precisely what would have been obtained

classically if the particles were subjected by the force generated by the quantum
potential in addition to the usual forces.

It should be noted, however, that the rewriting of Schrödinger’s equation
through the polar variables (R, S) is somehow misleading. In fact, first of all,
there is an increase in complexity: Schrödinger’s equation is a linear equation
while the modified Hamilton-Jacobi equation is highly nonlinear and still requires
the continuity equation for its closure. Note that, since in Bohmian mechanics
the dynamics is completely defined by Schrödinger’s equation (3) and the guiding
equation (2), there is no need of any further axioms involving the quantum potential
and thus it should not be regarded as the most basic structure defining Bohmian
mechanics.

Bohmian mechanics is not a rephrasing of quantum mechanics in classi-
cal terms. It is not simply classical mechanics with an additional force term. In
Bohmian mechanics the velocities are not independent of positions, as they are
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classically, but are constrained by the guiding equation (2). The correct way of re-
garding the Bohmian mechanics is as a first-order theory, in which the fundamental
quantity is the position of particles, whose dynamics is specified directly and sim-
ply by the velocity field (6). In Bohmian mechanics the second-order (Newtonian)
concepts of acceleration and force, work, and energy play no fundamental role.
Rather, they are fundamental to the theory to which Bohmian mechanics converges
in the classical limit, namely Newtonian mechanics. In fact, regardless of whether
or not we think of the quantum potential as fundamental, it can be useful: Eq. (16),
or, equivalently,

d2 Qk

dt2
= −∇(V + U ), (19)

show that all the deviations from classicality are embodied in the quantum force
−∇U , so that, whenever this force is negligible, there is classical motion (Bohm
and Hiley, 1993; Holland, 1993). This observation is the starting point for a com-
plete derivation of the classical limit of quantum mechanics. And the crucial step
for such a derivation is to characterize the physical conditions that guarantee small-
ness of the quantum force (see Allori, 2001; Allori et al., 2002; Allori and Zanghi,
2004).

6. NONLOCALITY AND HIDDEN VARIABLES

In the literature it is common to refer to Bohmian mechanics as a theory of
hidden variables. This is a consequence of the famous EPR paper (Einstein et al.,
1935) in which Einstein, Podolsky, and Rosen argued that quantum mechanics
might be incomplete. Their proposal was to look for some nonmeasurable variables
(somehow hidden) to complete the theory.

It should be stressed that the problem faced by Einstein, Podolsky, and Rosen
in their paper was about the locality of quantum theory: they assumed that reality is
local, i.e. action at distance is impossible, and proposed a mental experiment (that
we shall not recall here). Their conclusions were that, if reality is local, quantum
mechanics is incomplete and there is need of some extra variables to take this into
account. From the violation of Bell’s inequality (see Aspect et al., 1981; Bell, 1987)
it followed that their assumption was wrong: reality is nonlocal and therefore from
their reasoning we cannot conclude anything concerning the existence of hidden
variables.

We should emphasize that the original reason for introducing the configuration
of the particles as an extra variable in quantum mechanics has not much to do with
locality. This has created and indeed still creates a lot of confusion in understanding
which are the consequences of the violation of Bell’s inequality—that reality is
nonlocal and that any completion of quantum mechanics with local hidden variable
is impossible. This is not the case of Bohmian mechanics, in which nonlocality
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follows directly from the fact that the wave function is a function in configuration
space, not in ordinary space. This means that the velocity of each particle of a
system is composed by N particles, independently on how far they are. The degree
of action at distance depends on the degree of entanglement. It must be stressed
that nonlocality is not—by any means—a peculiarity of Bohmian mechanics:
nonlocality has turned out to be a fact of nature: nonlocality must be a feature
of any physical theory accounting for the observed violations of Bell’s inequality
(Bell, 1987).

The so called “no-go” theorems for hidden variables (Gleason (1957); Kochen
and Speker (1967); von Neumann (1932)) show that there is no “good” map from
operators to random variables (on the space of “hidden variables”), where by
“good” we mean that the joint distributions of the random variables are consistent
with the corresponding quantum mechanical distributions whenever the latter are
defined. As commonly understood, these theorems involve a certain irony: they
conclude with the impossibility of a deterministic description, or more generally of
any sort of realist description, only by in effect themselves assuming a “realism”
of a most implausible variety, namely, naive realism about operators (Daumer
et al., 1997b). There is in fact no reason to expect there to be such a map: the fact
that the same operator plays a role in different experiments does not imply that
these experiments have much else in common, and certainly not that they involve
measurements of the same thing. It is thus with detailed experiments, and not with
the associated operators, that random variables might reasonably be expected to
be associated (Bell, 1987; Daumer et al., 1997b; Dürr et al., 1996).

Finally, it is interesting to note, as a side remark, that the true “hidden” vari-
able is actually the wave function. In fact, it has not been stressed sufficiently that
it is indeed the wave function that cannot be measured! If the wave function were
measurable, there would exist an experimental device revealing the the actual wave
function ψ0 of the system prior to the measurement and the statistics of the pointer
measuring the wave function would be formally given by δ(ψ − ψ0), which, how-
ever, is not a quadratic form of ψ0, so that (11) is violated and and thus the wave
function is not measurable!

7. WHAT ABOUT RELATIVITY?

Bohmian mechanics, the theory defined by Eqs. (2) and (3) (together with
(4) and (5)), is not Lorentz invariant, since (3) is a nonrelativistic equation, and,
more importantly, since the right hand side of (5) involves the positions of the
particles at a common (absolute) time. It is also frequently asserted that Bohmian
mechanics cannot be made Lorentz invariant, by which it is presumably meant
that no Bohmian theory—no theory that could be regarded somehow as a natural
extension of Bohmian mechanics—can be found that is Lorentz invariant. In this
regard, we wish to make some remarks.
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1. The main reason for the belief that Bohmian mechanics cannot be
made Lorentz is the manifest nonlocality of Bohmian mechanics, but
nonlocality, as we have stressed in the previous section, is a fact of
nature.

2. Concerning the other (somehow related) widespread belief, that stan-
dard quantum theories have no problem incorporating relativity while
Bohmian mechanics does, we completely agree with the assessment of
Jean Bricmont: “Indeed, whatever the Copenhagen interpretation really
means, it must somewhere introduce a collapse or reduction of the state
vector or an intervention of the observer or some—usually verbal—
substitute for that. And, to my knowledge the Lorentz invariance of that
part of the “theory” is never discussed. And, if it was, problems caused by
EPR-type experiments, that are the source of the difficulty in obtaining a
Lorentz invariant Bohmian theory, would soon become evident (Bricmont,
2001).”

3. Indeed, the Bohmian state description (�, Q) has been extended to
(bosonic) field theories with Q representing the instantaneous configu-
ration of the field (see, e.g., Bohm, 1952; Bohm and Hiley, 1993; Holland,
1993). Though this might be the appropriate ontology for relativistic
physics, it should be stressed that Bell (1987, 173–180) has proposed
a Bohmian model for a quantum field theory involving both bosonic and
fermionic quantum fields in which the ontology is associated only with
fermions.

4. While the above extensions agree with the predictions of quantum field
theory—and thus they are relativistically invariant on the phenomenolog-
ical level—they seem to lack “serious” Lorentz invariance (as Bell has put
it (Bell, 1987)) on the level of the basic dynamical laws (for a discussion
of this point see Berndl et al. (1996).

5. Finally, we’d like to stress that it is indeed possible to construct “seri-
ous” Lorentz invariant Bohmian models, i.e., models for which Lorentz
invariance holds, not only on the phenomenological level, but also on the
microscopic level of the basic dynamical laws (Berndl et al., 1996; Dürr
et al., 1999; Goldstein and Tumulka, 2003).
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Daumer, M., Dürr, D., Goldstein, S., and Zanghı̀, N. (1997b). Naive realism about operators, Erkenntnis
45, 379–397.
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Dürr, D., Goldstein, S., Teufel, S., and Zanghı̀, N. (2000). Scattering theory from microscopic first

principles, Physica A 279, 416–431.
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